properties of M−hyoellipticity for pseudo differential operators

نویسندگان

  • M. Alimohammady Department of Mathematics, University of Mazandaran, Babolsar 47416-1468, Iran.
  • M. K. Kalleji Department of Mathematics, University of Mazandaran, Babolsar 47416-1468, Iran.
چکیده مقاله:

In this paper we study properties of symbols such that these belong to class of symbols sitting insideSm ρ,φ that we shall introduce as the following. So for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of M−hypoelliptic pseudodifferential operators for which define base on this class of symbols. Also we consider maximal andminimal operators of M−hypoelliptic pseudo differential operators and we express some results aboutthese operators.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

properties of m−hyoellipticity for pseudo differential operators

in this paper we study properties of symbols such that these belong to class of symbols sitting insidesm ρ,φ that we shall introduce as the following. so for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of m−hypoelliptic pseudodifferential operators for which define base on this class of symbols. also we consider maxi...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Automorphic Pseudo-differential Operators

For recent developments of this work in the classical direction, especially to generalizing to modular groups acting on higher dimensional spaces, see papers of Min Ho Lee: http://www.math.uni.edu/ lee/pub.html. He has, for example, developed the Hilbert modular case. Also, Olav Richter’s work on Rankin-Cohen brackets: http://www.math.unt.edu/ richter/. Work of Conley on 1/2-integral weight: ht...

متن کامل

Continuity and Schatten–von Neumann Properties for Pseudo–Differential Operators and Toeplitz operators on Modulation Spaces

Let M (ω) be the modulation space with parameters p, q and weight function ω. We prove that if p1 = p2, q1 = q2, ω1 = ω0ω and ω2 = ω0, and ∂ a/ω0 ∈ L ∞ for all α, then the Ψdo at(x,D) : M p1,q1 (ω1) → M22 (ω2) is continuous. If instead a ∈ M p,q (ω) for appropriate p, q and ω, then we prove that the map here above is continuous, and if in addition pj = qj = 2, then we prove that at(x,D) is a Sc...

متن کامل

Pseudo-differential operators for embedding formulae

A new method is proposed for deriving embedding formulae in 2-D diffraction problems. In contrast to the approach developed in [7], which is based on a differential operator, here a pseudo-differential, i.e., a non-local operator is applied to the wave field. Using this non-local operator a new embedding formula is derived for scattering by a single wedge. The formula has uniform structure for ...

متن کامل

Pseudo-differential Operators on Fractals

We define and study pseudo-differential operators on a class of fractals that include the post-critically finite self-similar sets and Sierpinski carpets. Using the sub-Gaussian estimates of the heat operator we prove that our operators have kernels that decay and, in the constant coefficient case, are smooth off the diagonal. Our analysis can be extended to product of fractals. While our resul...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  35- 48

تاریخ انتشار 2013-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023